sustaingym.algorithms.evcharging.baselines
#
This module implements baseline algorithms for EVChargingEnv.
Module Contents#
Classes#
Per-time step greedy charging. Whether the action space is continuous or |
|
Random action. |
|
Model predictive control. |
|
Calculates best performance of a controller that knows the future. |
Attributes#
- class sustaingym.algorithms.evcharging.baselines.GreedyAlgorithm(env: sustaingym.envs.evcharging.EVChargingEnv)[source]#
Bases:
sustaingym.algorithms.base.BaseAlgorithm
Per-time step greedy charging. Whether the action space is continuous or discrete, GreedyAlgorithm outputs the maximum pilot signal allowed.
- Parameters:
- class sustaingym.algorithms.evcharging.baselines.RandomAlgorithm(env: sustaingym.envs.evcharging.EVChargingEnv)[source]#
Bases:
sustaingym.algorithms.base.BaseAlgorithm
Random action.
- Parameters:
- class sustaingym.algorithms.evcharging.baselines.MPC(env: sustaingym.envs.evcharging.EVChargingEnv, lookahead: int = 12)[source]#
Bases:
sustaingym.algorithms.base.BaseAlgorithm
Model predictive control.
See
BaseAlgorithm
for more attributes.- Parameters:
env (sustaingym.envs.evcharging.EVChargingEnv) – EV charging environment
lookahead (int) – number of timesteps to forecast future trajectory
- lookahead#
number of timesteps to forecast future trajectory. Note that MPC cannot see future car arrivals and does not take them into account.
- class sustaingym.algorithms.evcharging.baselines.OfflineOptimal(env: sustaingym.envs.evcharging.EVChargingEnv)[source]#
Bases:
sustaingym.algorithms.base.BaseAlgorithm
Calculates best performance of a controller that knows the future.
- Parameters:
env (sustaingym.envs.evcharging.EVChargingEnv) – EV charging environment